EE278 Statistical Signal Processing Stanford, Autumn 2023

Homework 1

Due: Thursday, October 5, 2023, 1pm on Gradescope

Please upload your answers timely to Gradescope. Start a new page for every problem. For the programming/simulation questions you can use any reasonable programming language. Comment your source code and include the code and a brief overall explanation with your answers.

1. Exercise 1.1 in textbook. Let A_{1} and A_{2} be arbitrary events and show that

$$
\operatorname{Pr}\left\{A_{1} \cup A_{2}\right\}+\operatorname{Pr}\left\{A_{1} \cap A_{2}\right\}=\operatorname{Pr}\left\{A_{1}\right\}+\operatorname{Pr}\left\{A_{2}\right\}
$$

Explain which parts of the sample space are being double counted on both sides of this equation and which parts are being counted once.
2. Exercise 1.12 in textbook, parts (a), (b). Let X be a random variable with CDF $F(x)$. Find the CDF of the following random variables.
(a) The maximum of n i.i.d. rvs, each with CDF $F(x)$.
(b) The minimum of n i.i.d. rvs, each with CDF $F(x)$.
3. Exercise 1.21 in textbook, parts (a)-(e).
(a) Show that, for uncorrelated rvs, the expected value of the product is equal to the product of the expected values (by definition, X and Y are uncorrelated if $\mathbb{E}[(X-\bar{X})(Y-\bar{Y})]=0)$.
(b) Show that if X and Y are uncorrelated, then the variance of $X+Y$ is equal to the variance of X plus the variance of Y.
(c) Show that if $X_{1} \ldots, X_{n}$ are uncorrelated, then the variance of the sum is equal to the sum of the variances.
(d) Show that independent rv s are uncorrelated.
(e) Let X, Y be identically distributed ternary valued rvs with the PMF $p_{X}(-1)=$ $p_{X}(1)=1 / 4 ; p_{X}(0)=1 / 2$. Find a simple joint probability assignment such that X and Y are uncorrelated but dependent.
4. Consider the binary symmetric channel model mentioned in class. This is a channel we can use to transmit bits and each bit is flipped independently with probability p regardless of the value of the bit. We want to estimate the flip probability p of the channel by sending a known training bit sequence over the channel and counting the number of bit flips at the receiver side.
a) Suppose $p=0.1$ and we want to estimate it to within accuracy plus or minus 0.01 . We want to know the minimum length n^{*} of the training sequence (i.e. the number of bits you need to send over the channel) such that:

$$
\operatorname{Pr}\left\{\left|\hat{p_{n}}-p\right|>0.01\right\}<0.05
$$

where $\hat{p_{n}}$ is the fraction of bits flipped. Do this in two ways and compare your answers:
i. Bound using Chebyshev bound
ii. Estimate using the Central-limit approximation
b) In practice p is unknown. (That's the whole point!) Repeat part (a) to come up with sensible answers using both ways. You may do the calculations either analytically or using a short computer program.
Hint: Can you identify the worst-case value of p that will make the bounds you derived in part (a) largest?

5. Two Envelopes

A fixed amount a is placed in one envelope and an amount $5 a$ is placed in the other. Suppose one of the two envelopes is chosen uniformly at random, and let X be the amount in the opened envelope. Let Y be the amount in the other envelope.
a) Find $\mathbb{E}\left[\frac{Y}{X}\right]$.
b) Find $\mathbb{E}\left[\frac{X}{Y}\right]$.
c) Find $\mathbb{E}[Y] / \mathbb{E}[X]$.

6. Computing probability of events

(a) Uniform r.v. Consider a random variable $X \sim$ Unif[2, 10], i.e., uniformly chosen from the interval $[2,10]$. What is the probability that $X^{2}-12 X+35>0$?
(b) Laplacian r.v. Let X be a continuous random variable with pdf $f_{X}(x)=(1 / 2) e^{-|x|}$ for $-\infty<x<\infty$. Find the probability of each of the following events.
i. $\{X \leq 2$ or $X \geq 0\}$.
ii. $\{|X|+|X-3| \leq 3\}$.

